Tuesday, 19 September 2017

Exponential Moving Average Vorteile


OANDA verwendet Cookies, um unsere Websites einfach zu benutzen und an unsere Besucher angepasst zu machen. Cookies können nicht verwendet werden, um Sie persönlich zu identifizieren. Durch den Besuch unserer Website stimmen Sie zu OANDA8217s Cookies im Einklang mit unserer Datenschutzerklärung. Um Cookies zu blockieren, zu löschen oder zu verwalten, besuchen Sie bitte aboutcookies. org. Das Einschränken von Cookies verhindert, dass Sie von einigen Funktionen unserer Website profitieren. Laden Sie unser Mobile-Apps Konto auswählen: ampltiframe src4489469.fls. doubleclickactivityisrc4489469typenewsi0catoanda0u1fxtradeiddclatdcrdidtagforchilddirectedtreatmentord1num1 mcesrc4489469.fls. doubleclickactivityisrc4489469typenewsi0catoanda0u1fxtradeiddclatdcrdidtagforchilddirectedtreatmentord1num1 breite1 height1 frameborder0 Styledisplay: keine mcestyledisplay: noneampgtampltiframeampgt Lektion 1: Moving Averages Vorteile der Verwendung von Gleitende Durchschnitte Gleitende Durchschnitte glätten Marktkursschwankungen, die oft mit jedem Berichts auftreten Zeitraum in einem Preis-Chart. Je häufiger die Rate-Updates - das heißt, je öfter das Kursdiagramm eine aktualisierte Rate anzeigt - desto größer ist das Potenzial für Marktlärm. Für Händler, die sich in einem sich schnell bewegenden Markt, der reicht oder peitscht auf und ab, das Potenzial für falsche Signale ist ein ständiges Anliegen. Vergleich von 20-Perioden-Moving-Average zu Real-Time Market Rates Je größer der Grad der Preisvolatilität ist, desto größer ist die Wahrscheinlichkeit, dass ein falsches Signal erzeugt wird. Ein falsches Signal tritt auf, wenn es scheint, dass der aktuelle Trend im Gegenteil rückläufig ist, aber die nächste Berichtsperiode beweist, dass das, was ursprünglich schien eine Umkehrung war in der Tat eine Marktschwankung. Wie sich die Anzahl der Berichtszeiträume auf den gleitenden Durchschnitt auswirkt Die Anzahl der Berichtszeiträume, die in der gleitenden Durchschnittsberechnung enthalten sind, wirkt sich auf die gleitende Durchschnittslinie aus, wie sie in einer Preisübersicht angezeigt wird. Je weniger Datenpunkte (d. H. Berichtszeiträume) in dem Durchschnitt enthalten sind, desto näher bleibt der gleitende Durchschnitt der Kassakurse, wodurch er seinen Wert verringert und wenig mehr Einblick in den Gesamttrend erhält als die Preisliste selbst. Auf der anderen Seite zeigt ein gleitender Durchschnitt, der zu viele Punkte enthält, die Preisschwankungen so stark aus, dass Sie keinen erkennbaren Zinsverlauf erkennen können. Jede Situation kann es schwierig machen, Umkehrpunkte in ausreichender Zeit zu erkennen, um die Vorteile einer Trendwende zu nutzen. Candlestick-Kursdiagramm mit drei verschiedenen Bewegungsdurchschnittslinien Berichtszeitraum - Eine allgemeine Referenz, die verwendet wird, um die Häufigkeit zu beschreiben, mit der die Wechselkursdaten aktualisiert werden. Auch als Granularität bezeichnet. Dies könnte von einem Monat, einem Tag, einer Stunde - sogar so oft wie alle paar Sekunden. Die Faustregel ist, dass je kürzer die Zeit, die Sie halten Trades offen, desto häufiger sollten Sie Rate Exchange Daten abzurufen. 169 1996 - 2017 OANDA Corporation. Alle Rechte vorbehalten. OANDA, fxTrade und OANDAs fx sind Eigentum der OANDA Corporation. Alle anderen Marken, die auf dieser Website erscheinen, sind Eigentum der jeweiligen Inhaber. Der fremdfinanzierte Handel mit Devisentermingeschäften oder anderen außerbörslich gehandelten Produkten hat ein hohes Risiko und ist möglicherweise nicht für jedermann geeignet. Wir empfehlen Ihnen, sorgfältig zu prüfen, ob der Handel unter Berücksichtigung Ihrer persönlichen Gegebenheiten für Sie angemessen ist. Sie können mehr verlieren, als Sie investieren. Die Informationen auf dieser Website sind allgemeiner Natur. Wir empfehlen Ihnen, eine unabhängige Finanzberatung zu suchen und die Risiken, die vor dem Handel bestehen, vollständig zu verstehen. Der Handel über eine Online-Plattform trägt zusätzliche Risiken. Siehe hierzu unseren rechtlichen Teil. Financial Spread Wetten ist nur für OANDA Europe Ltd Kunden, die in Großbritannien oder Irland. CFDs, MT4-Hedging-Fähigkeiten und Leverage Ratios von mehr als 50: 1 sind für US-Bürger nicht verfügbar. Die Informationen auf dieser Website sind nicht an Einwohner von Ländern gerichtet, in denen die Verbreitung oder die Verwendung durch irgendeine Person den lokalen Gesetzen oder Bestimmungen widersprechen würde. OANDA Corporation ist ein registrierter Futures Commission Merchant und Retail Devisenhändler mit der Commodity Futures Trading Commission und ist Mitglied der National Futures Association. Nr .: 0325821. Bitte beachten Sie bei Bedarf die NFAs FOREX INVESTOR ALERT. OANDA (Kanada) Corporation ULC-Konten sind für jedermann mit einem kanadischen Bankkonto zur Verfügung. OANDA (Canada) Corporation ULC wird von der Investment Industry Regulatory Organisation of Canada (IIROC) geregelt, zu der auch die IIROC-Online-Advisor-Prüfdatenbank (IIROC AdvisorReport) gehört und Kundenkonten durch den kanadischen Investor Protection Fund innerhalb festgelegter Grenzen geschützt werden. Eine Broschüre, die Art und Grenzen der Berichterstattung beschreibt, ist auf Anfrage oder bei cipf. ca erhältlich. OANDA Europe Limited ist eine in England unter der Nummer 7110087 eingetragene Gesellschaft und hat ihren Sitz in Floor 9a, Tower 42, 25 Old Broad St, London EC2N 1HQ. Sie ist von der Financial Conduct Authority zugelassen und reguliert. Nr .: 542574. OANDA Asia Pacific Pte Ltd (Co. Reg. Nr. 200704926K) hält eine Capital Markets Services Lizenz ausgestellt von der Monetary Authority of Singapore und ist auch lizenziert durch die International Enterprise Singapore. OANDA Australia Pty Ltd 160 wird von der australischen Securities and Investments Commission ASIC (ABN 26 152 088 349, AFSL Nr. 412981) reguliert und ist der Emittent der Produkte und Dienstleistungen auf dieser Website. Es ist wichtig für Sie, um die aktuelle Financial Service Guide (FSG) zu betrachten. Produkt-Offenlegungserklärung (PDS). Konto-Bedingungen und alle anderen relevanten OANDA-Dokumente, bevor sie Finanzierungsentscheidungen treffen. Diese Dokumente finden Sie hier. OANDA Japan Co. Ltd. Erster Typ I Finanzinstrumente Geschäftsdirektor des Kanto Local Financial Bureau (Kin-sho) Nr. 2137 Institute Financial Futures Association Teilnehmer Nr. 1571. Der Handel mit Devisen und CFDs auf Marge ist ein hohes Risiko und nicht für jedermann geeignet. Verluste können die Investitionen übertreffen. Moving Durchschnitte Der gleitende Durchschnitt (oft verkürzt, um ma in unserer Forschung) ist einer der beliebtesten Indikatoren und wird von technischen Analysten für eine Vielzahl von Aufgaben verwendet: um Bereiche der kurzfristigen Unterstützung zu bestimmen, um den aktuellen Trend zu bestimmen Als Bestandteil in vielen anderen Indikatoren wie den MACD - oder Bollinger-Bändern. Die Hauptvorteile von gleitenden Durchschnitten sind zum einen, dass sie die Daten glätten und so ein klareres Bild des aktuellen Trends liefern und zweitens, dass ma. a. Signale können eine genaue Antwort geben, was der Trend ist. Der Hauptnachteil ist, dass sie eher hinter den Vorhersageindikatoren zurückbleiben, aber dies sollte kein Problem für längerfristige Investoren sein. Es gibt zwei Hauptformen des gleitenden Durchschnitts: Der einfache gleitende Durchschnitt berechnet (wie der Name schon sagt) den Durchschnittspreis über einen bestimmten fahrenden Zeitraum. Zum Beispiel wird ein 20 Tage einfacher gleitender Durchschnitt den durchschnittlichen mittleren Preis aus den letzten zwanzig Tagen Schlusskurse und so weiter zu berechnen. Der exponentielle gleitende Durchschnitt (ema) schätzt auch die letzten x Tage, schließt aber den jüngeren Preisen ein größeres Gewicht zu, wodurch es empfindlicher auf aktuelle Preisaktionen reagiert und somit den Lag-Effekt reduziert. Bestimmen der kurzzeitigen Unterstützung und des Widerstands Die folgende Tabelle zeigt den Nasdaq 100 Index mit einem 50 Tage exponentiellen gleitenden Durchschnitt (ema). Der Index macht höhere Höchstwerte und höhere Tiefststände in einer konsistenten Weise durch die meisten von 2003 und die 50-Tage-Ema lieferte einen guten Hinweis darauf, wo diese Vertiefungen d. h. Man könnte natürlich versuchen, einen etwas längeren Zeitraum gleitenden Durchschnitt, um sicherzustellen, dass alle Täler blieben über dem Durchschnitt aber aus Erfahrung haben wir festgestellt, dass die 50 Tage ema den Job gut macht. Erzeugen von Handelssignalen Die Crossover-Methode erzeugt ein relativ zuverlässiges automatisches Handelssignal, wenn ein kürzeres durchschnittliches Zeitlimit über einem längerfristigen Durchschnitt liegt. Im Beispiel unten haben wir 20 und 50 Tage Emas für den Nasdaq 100 Index gezeigt. Die Crossover-Methode würde den Index kaufen, wenn die empfindlichere 20-Tage-Ema (grüne Linie) über die längerfristige 50-Tage-Ema (rote Linie) kreuzt und den Index verkaufen würde, wenn die 20-Tage-Ema unterhalb der 50-Tage-Ema kreuzt. Wir haben mit blauen Pfeilen markiert und mit roten Pfeilen verkauft, diese Faustregel hätte uns von etwa 1000 bis etwa 1500 auf dem Markt gehalten. Der Zugang zu unseren Forschungsdiensten erfordert die Annahme unserer Geschäftsbedingungen und unterliegt unserem Haftungsausschluss. Lesen Sie unsere Datenschutzbestimmungen. Der US Stock Service und der US Market Timing Service werden von Chartcraft Inc (Chartcraft) zur Verfügung gestellt, die kein reguliertes Geschäft ist. Alle anderen Dienstleistungen werden von Stockcube Research Limited (Stockcube) zur Verfügung gestellt, die von der britischen Financial Conduct Authority zugelassen und reguliert wird. Chartcraft und Stockcube sind hundertprozentig im Besitz von Stockcube Ltd., einem britischen Unternehmen, das in England registriert ist. Moving durchschnittliche und exponentielle Glättungsmodelle Als ein erster Schritt, über jenseits von Mittelwerten, zufälligen Wegmodellen und linearen Trendmodellen hinauszugehen, können nicht-saisonale Muster und Trends extrapoliert werden Mit einem gleitenden Durchschnitt oder Glättungsmodell. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als "quotsmoothedquot" - Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Anpassen des Glättungsgrades (die Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimaler Balance zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Einfache (gleichgewichtige) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Mittelwert der letzten m Beobachtungen: (Hier und anderswo werde ich das Symbol 8220Y-hat8221 stehen lassen Für eine Prognose der Zeitreihe Y, die am frühestmöglichen früheren Zeitpunkt durch ein gegebenes Modell durchgeführt wird.) Dieser Mittelwert wird auf den Zeitraum t (m1) 2 zentriert, was impliziert, daß die Schätzung des lokalen Mittels dazu neigt, hinter dem wahr zu liegen Wert des lokalen Mittels um etwa (m1) 2 Perioden. Somit ist das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu der Periode, für die die Prognose berechnet wird, angegeben: dies ist die Zeitspanne, in der die Prognosen dazu neigen, hinter den Wendepunkten der Daten zu liegen . Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn m1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um den besten Quotienten der Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Erstens können wir versuchen, es mit einem zufälligen Weg Modell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff entspricht: Das zufällige Wandermodell reagiert sehr schnell auf Änderungen in der Serie, aber dabei nimmt sie einen Großteil der quotnoisequot in der Daten (die zufälligen Fluktuationen) sowie das Quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Rückgang in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst um einige Zeit später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts werden nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Konfidenzgrenzen für die längerfristigen Prognosen zu berechnen. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-Term einfach gleitenden Durchschnitt versuchen, erhalten wir sogar noch bessere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, darunter auch einen 3-Term-Durchschnitt: Modell C, der 5-Term-Gleitender Durchschnitt, ergibt den niedrigsten Wert von RMSE mit einer kleinen Marge über die 3 - term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Rückkehr nach oben.) Browns Einfache Exponentialglättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k-Beobachtungen gleich und vollständig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. 945 bezeichnen eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Serie L zu definieren, die den gegenwärtigen Pegel (d. H. Den lokalen Mittelwert) der Serie, wie er aus Daten bis zu der Zeit geschätzt wird, darstellt. Der Wert von L zur Zeit t wird rekursiv von seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf die neueste steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: Äquivalent können wir die nächste Prognose direkt in Form früherer Prognosen und früherer Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung des bisherigen Fehlers um einen Bruchteil 945 erhalten Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Abzinsungsfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren Einzelzelle und enthält Zellverweise, die auf die vorhergehende Prognose, die vorherige Beobachtung und die Zelle mit dem Wert von 945 zeigen. Beachten Sie, dass, wenn 945 1, das SES-Modell zu einem zufälligen Weg-Modell (ohne Wachstum) äquivalent ist. Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, wobei angenommen wird, dass der erste geglättete Wert gleich dem Mittelwert gesetzt ist. (Zurück zum Seitenanfang.) Das Durchschnittsalter der Daten in der Simple-Exponential-Glättungsprognose beträgt 1 945, bezogen auf den Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1 945 Perioden. Wenn beispielsweise 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättungsprognose (SES) der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas mehr quresponsivequot zu Änderungen, die sich in der jüngsten Vergangenheit. Zum Beispiel haben ein SMA - Modell mit 9 Terminen und ein SES - Modell mit 945 0,2 beide ein durchschnittliches Alter von 5 Jahren für die Daten in ihren Prognosen, aber das SES - Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA - Modell und am Gleiches gilt für die Werte von mehr als 9 Perioden, wie in dieser Tabelle gezeigt: 822forget8221. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist und somit leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Serie ergibt sich wie folgt: Das durchschnittliche Alter der Daten in dieser Prognose beträgt 10.2961 3,4 Perioden, was ähnlich wie bei einem 6-term einfachen gleitenden Durchschnitt ist. Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbarer ist als das Zufallswandermodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So dass die statistische Theorie der ARIMA-Modelle eine solide Grundlage für die Berechnung der Konfidenzintervalle für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. Ansonsten als quotARIMA (0,1,1) - Modell ohne Konstantquot bekannt. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Größe 1 - 945 im SES-Modell. Wenn Sie zum Beispiel ein ARIMA-Modell (0,1,1) ohne Konstante an die hier analysierte Serie anpassen, ergibt sich der geschätzte MA (1) - Koeffizient auf 0,7029, was fast genau ein Minus von 0,2961 ist. Es ist möglich, die Annahme eines von Null verschiedenen konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu wird ein ARIMA-Modell mit einer nicht sonderbaren Differenz und einem MA (1) - Term mit konstantem, d. H. Einem ARIMA-Modell (0,1,1) mit konstantem Wert angegeben. Die langfristigen Prognosen haben dann einen Trend, der dem durchschnittlichen Trend über den gesamten Schätzungszeitraum entspricht. Sie können dies nicht in Verbindung mit saisonalen Anpassungen tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist. Sie können jedoch einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die prozentuale Zinssatzquote (prozentuale Wachstumsrate) pro Periode kann als Neigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmus-Transformation angepasst ist, oder es kann auf anderen unabhängigen Informationen bezüglich der langfristigen Wachstumsperspektiven beruhen . (Rückkehr nach oben.) Browns Linear (dh doppelt) Exponentielle Glättung Die SMA-Modelle und SES-Modelle gehen davon aus, dass es in den Daten keinen Trend gibt (was in der Regel in Ordnung ist oder zumindest nicht zu schlecht für 1- Wenn die Daten relativ verrauscht sind), und sie können modifiziert werden, um einen konstanten linearen Trend, wie oben gezeigt, zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen das Rauschen auszeichnet, und wenn es notwendig ist, mehr als eine Periode vorher zu prognostizieren, könnte die Schätzung eines lokalen Trends auch sein Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl des Niveaus als auch des Trends berechnet. Das einfachste zeitvariable Trendmodell ist Browns lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine weiterentwickelte Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des Brown8217s linearen exponentiellen Glättungsmodells, wie die des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von unterschiedlichen, aber äquivalenten Formen ausgedrückt werden. Die quadratische quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einfacher exponentieller Glättung auf Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern wir uns, Exponentielle Glättung, so würde dies die Prognose für Y in der Periode t1 sein.) Dann sei Squot die doppelt geglättete Folge, die man erhält, indem man eine einfache exponentielle Glättung (unter Verwendung desselben 945) auf die Reihe S anwendet: Schließlich die Prognose für Ytk. Für jedes kgt1 ist gegeben durch: Dies ergibt e & sub1; & sub0; (d. h. Cheat ein Bit und die erste Prognose der tatsächlichen ersten Beobachtung gleich) und e & sub2; Y & sub2; 8211 Y & sub1; Nach denen die Prognosen unter Verwendung der obigen Gleichung erzeugt werden. Dies ergibt die gleichen Anpassungswerte wie die Formel auf der Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt8217s Lineares Exponentialglättung Brown8217s LES-Modell berechnet lokale Schätzungen von Pegel und Trend durch Glätten der letzten Daten, aber die Tatsache, dass dies mit einem einzigen Glättungsparameter erfolgt, legt eine Einschränkung für die Datenmuster fest, die es anpassen kann: den Pegel und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem durch zwei Glättungskonstanten, eine für die Ebene und eine für den Trend. Zu jedem Zeitpunkt t, wie in Brown8217s-Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem zum Zeitpunkt t beobachteten Wert von Y und den vorherigen Schätzungen von Pegel und Trend durch zwei Gleichungen berechnet, die exponentielle Glättung separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der tatsächliche Wert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv berechnet, indem zwischen Y tshy und seiner Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1- 945 interpoliert wird. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine verrauschte Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv berechnet, indem zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 interpoliert wird. Unter Verwendung der Gewichte von 946 und 1-946: Die Interpretation der Trendglättungskonstanten 946 ist analog zu der Pegelglättungskonstante 945. Modelle mit kleinen Werten von 946 nehmen an, dass sich der Trend mit der Zeit nur sehr langsam ändert, während Modelle mit Größere 946 nehmen an, dass sie sich schneller ändert. Ein Modell mit einem großen 946 ist der Auffassung, dass die ferne Zukunft sehr unsicher ist, da Fehler bei der Trendschätzung bei der Prognose von mehr als einer Periode ganz wichtig werden. (Rückkehr nach oben) Die Glättungskonstanten 945 und 946 können auf übliche Weise geschätzt werden, indem der mittlere quadratische Fehler der 1-Schritt-Voraus-Prognosen minimiert wird. Wenn dies in Statgraphics getan wird, ergeben sich die Schätzungen 945 0.3048 und 946 0,008. Der sehr geringe Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten annimmt, so dass dieses Modell im Grunde versucht, einen langfristigen Trend abzuschätzen. Analog zur Vorstellung des Durchschnittsalters der Daten, die bei der Schätzung der lokalen Ebene der Reihe verwendet werden, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, proportional zu 1 946, wenn auch nicht exakt gleich . In diesem Fall erweist sich dies als 10.006 125. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 nicht wirklich 3 Dezimalstellen beträgt, aber sie ist von der gleichen Größenordnung wie die Stichprobengröße von 100 Dieses Modell ist Mittelung über eine ziemlich große Geschichte bei der Schätzung der Trend. Das Prognose-Diagramm unten zeigt, dass das LES-Modell einen etwas größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Außerdem ist der Schätzwert von 945 fast identisch mit dem, der durch Anpassen des SES-Modells mit oder ohne Trend erhalten wird, so dass dies fast das gleiche Modell ist. Nun, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll Schätzung einer lokalen Tendenz Wenn Sie 8220eyeball8221 dieser Handlung, sieht es so aus, als ob der lokale Trend nach unten am Ende der Serie gedreht hat Was ist passiert Die Parameter dieses Modells Wurden durch Minimierung des quadratischen Fehlers von 1-Schritt-Voraus-Prognosen, nicht längerfristigen Prognosen, abgeschätzt, wobei der Trend keinen großen Unterschied macht. Wenn alles, was Sie suchen, 1-Schritt-vor-Fehler sind, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trendglättungskonstante manuell anpassen, so dass sie eine kürzere Basislinie für die Trendschätzung verwendet. Wenn wir beispielsweise 946 0,1 setzen, beträgt das durchschnittliche Alter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so mitteln. Here8217s, was das Prognose-Plot aussieht, wenn wir 946 0,1 setzen, während 945 0,3 halten. Dies scheint intuitiv vernünftig für diese Serie, obwohl es wahrscheinlich gefährlich, diese Tendenz nicht mehr als 10 Perioden in der Zukunft zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber ähnliche Ergebnisse (mit etwas mehr oder weniger Reaktionsfähigkeit) werden mit 0,5 und 0,2 erhalten. (A) Holts linearer Exp. Glättung mit alpha 0.3048 und beta 0,008 (B) Holts linear exp. Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl auf der Basis machen können Von 1-Schritt-Vorhersagefehlern innerhalb der Datenprobe. Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir glauben, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zugrunde zu legen, können wir für das LES-Modell mit 945 0,3 und 946 0,1 einen Fall machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein, und würde auch für die nächsten 5 oder 10 Perioden mehr Mittelprognosen geben. (Rückkehr nach oben.) Welche Art von Trend-Extrapolation am besten ist: horizontal oder linear Empirische Evidenz deutet darauf hin, dass es, wenn die Daten bereits für die Inflation angepasst wurden (wenn nötig), unprätent ist, kurzfristige lineare Werte zu extrapolieren Trends sehr weit in die Zukunft. Die heutigen Trends können sich in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und konjunkturelle Abschwünge oder Aufschwünge in einer Branche abschwächen. Aus diesem Grund führt eine einfache exponentielle Glättung oft zu einer besseren Out-of-Probe, als ansonsten erwartet werden könnte, trotz ihrer quotnaivequot horizontalen Trend-Extrapolation. Damped Trendmodifikationen des linearen exponentiellen Glättungsmodells werden in der Praxis häufig auch eingesetzt, um in seinen Trendprojektionen eine Note des Konservatismus einzuführen. Das Dämpfungs-Trend-LES-Modell kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA-Modells (1,1,2), implementiert werden. Es ist möglich, Konfidenzintervalle um langfristige Prognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Spezialfälle von ARIMA-Modellen betrachtet. (Achtung: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt ab von (i) dem RMS-Fehler des Modells, (ii) der Art der Glättung (einfach oder linear) (iii) dem Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der Perioden vor der Prognose. Im Allgemeinen breiten sich die Intervalle schneller aus, da 945 im SES-Modell größer wird und sich viel schneller ausbreiten, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im Abschnitt "ARIMA-Modelle" weiter erläutert. (Zurück zum Seitenanfang.)

No comments:

Post a Comment